D-Glucose Assay Kit (GOPOD Format)

D-Glucose Assay Kit (GOPOD Format)

Catalog Number:
CMK1462174MEG
Mfr. No.:
K-GLUC
Price:
$454
  • Size:
    660 assays per kit
    Quantity:
    Add to Cart:
      • Overview
        • The D-Glucose test kit contains high purity reagents for the measurement and analysis of D-glucose in cereal extracts and for use in combination with other kits.

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Limit of Detection: 40mg/L
          Storage
          Short term stability: 2-8°C
          Long term stability: See individual component labels
          Stability
          > 2 years under recommended storage conditions

          * For research use only.

      • Applications
        • Application Description
          Wine, beer, fruit juices, soft drinks, milk, jam, dietetic foods, bakery products, candies, fruit and vegetables, tobacco, cosmetics, pharmaceuticals, feed, paper and other materials (e.g. biological cultures, samples, etc.).
      • Reference
        • 1.Diastatic power and maltose value: a method for the measurement of amylolytic enzymes in malt. Charmier, L. M., McLoughlin, C. & McCleary, B. V. (2021). Journal of the Institute of Brewing, In Press.
          2.Measurement of available carbohydrates in cereal and cereal products, dairy products, vegetables, fruit and related food products and animal feeds: First Action 2020.07. McCleary, B. V. & McLoughlin, C. (2021). Journal of AOAC International, qsab019.
          3.Measurement of Starch: Critical evaluation of current methodology. McCleary, B. V., Charmier, L. M. J. & McKie, V. A. (2018). Starch‐Stärke, 71(1-2), 1800146.
          4.Megazyme “advanced” wine test kits general characteristics and validation. Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.
          5.Grape and wine analysis: Oenologists to exploit advanced test kits. Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.
          6.Mechanistic insights into the enhanced texture of potato noodles by incorporation of small granule starches. Ma, M., Zhang, X., Zhu, Y., Li, Z., Sui, Z. & Corke, H. (2024). International Journal of Biological Macromolecules, 257, 128535.
          7.Effects of single and dual modifications with debranching and heat-moisture treatments on physicochemical, rheological, and digestibility properties of proso millet starch. Kumar, S. R., Tangsrianugul, N., Sriprablom, J., Winuprasith, T., Wansuksri, R. & Suphantharika, M. (2023). Carbohydrate Polymer Technologies and Applications, 6, 100399.
          8.Effects of heat–moisture treatment on structural characteristics and in vitro digestibility of A-and B-type wheat starch. Wang, J., Huang, J., Liang, Q. & Gao, Q. (2024). International Journal of Biological Macromolecules, 256, 128012.
          9.Characterisation of physicochemical parameters and antibacterial properties of New Caledonian honeys. Bucekova, M., Godocikova, J., Gueyte, R., Chambrey, C. & Majtan, J. (2023). Plos one, 18(10), e0293730.
          10.Lipid complexation reduces rice starch digestibility and boosts short-chain fatty acid production via gut microbiota. Shen, Y., An, Z., Huyan, Z., Shu, X., Wu, D., Zhang, N., Pellegrini, N. & Rubert, J. (2023). npj Science of Food, 7(1), 56.
          11.Intensification of corn fiber saccharification using a tailor made enzymatic cocktail. Manso, J. O., Nielsen, M. B., Moya, E. B., Sandri, J. P., Yamakawa, C. K. & Mussatto, S. I. (2024). Enzyme and Microbial Technology, 172, 110347.
          12.The role of herbal teas in reducing the starch digestibility of cooked rice (Oryza sativa L.): An in vitro co-digestion study. Aumasa, T., Ogawa, Y., Singh, J., Panpipat, W. & Donlao, N. (2023). NFS Journal, 33, 100154.
          13.Growth-coupled anaerobic production of isobutanol from glucose in minimal medium with Escherichia coli. Boecker, S., Schulze, P. & Klamt, S. (2023). Biotechnology for Biofuels and Bioproducts, 16(1), 148.
          14.Starch molecular structures in relation to properties of ratoon rice produced by different ratooning practices. Yang, X., Peng, T., Xu, Y., Gao, K., Zhao, Q. & Song, X. (2024). Carbohydrate Polymers, 323, 121459.
          15.Recovery of Nanocellulose from Agri-Food Residues through Chemical and Physical Processes. Pirozzi, A., Pappalardo, G. & Donsì, F. (2023). Chemical Engineering Transactions, 102, 175-180.

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.