D-Glucose HK Assay Kit

D-Glucose HK Assay Kit

Catalog Number:
CMK1462175MEG
Mfr. No.:
K-GLUHK-220A; K-GLUHK-110A
Price:
$569
  • Size:
    Quantity:
    Add to Cart:
      • Overview
        • The D-Glucose HK (Regular) test kit is a high purity reagent for the measurement and analysis of D-glucose in plant and food products. Can be used in combination with other products that require glucose determination.

          Note for Content: The number of manual tests per kit can be doubled if all volumes are halved. This can be readily accommodated using the MegaQuantTM Wave Spectrophotometer (D-MQWAVE).

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Limit of Detection: 0.66mg/L
          Storage
          Short term stability: 2-8°C
          Long term stability: See individual component labels
          Stability
          > 2 years under recommended storage conditions

          * For research use only.

      • Applications
        • Application Description
          Wine, beer, fruit juices, soft drinks, milk, jam, dietetic foods, bakery products, candies, fruit and vegetables, tobacco, cosmetics, pharmaceuticals (e.g. infusions), feed, paper (and cardboard) and other materials (e.g. biological cultures, samples, etc.).
      • Reference
        • 1.Measurement of available carbohydrates in cereal and cereal products, dairy products, vegetables, fruit and related food products and animal feeds: First Action 2020.07. McCleary, B. V. & McLoughlin, C. (2021). Journal of AOAC International, qsab019.
          2.Measurement of Starch: Critical evaluation of current methodology. McCleary, B. V., Charmier, L. M. J. & McKie, V. A. (2018). Starch‐Stärke, 71(1-2), 1800146.
          3.Megazyme “advanced” wine test kits general characteristics and validation. Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.
          4.Measurement of carbohydrates in grain, feed and food. McCleary, B. V., Charnock, S. J., Rossiter, P. C., O’Shea, M. F., Power, A. M. & Lloyd, R. M. (2006). Journal of the Science of Food and Agriculture, 86(11), 1648-1661.
          5.Grape and wine analysis: Oenologists to exploit advanced test kits. Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.
          6.Measurement of total starch in cereal products by amyloglucosidase-alpha-amylase method: collaborative study. McCleary, B. V., Gibson, T. S. & Mugford, D. C. (1997). Journal of AOAC International, 80, 571-579.
          7.Postprandial glycemic and lipidemic effects of black rice anthocyanin extract fortification in foods of varying macronutrient compositions and matrices. Ou, S. J. L., Yang, D., Pranata, H. P., Tai, E. S. & Liu, M. H. (2023). npj Science of Food, 7(1), 59.
          8.Circadian Variation in Human Milk Hormones and Macronutrients. Suwaydi, M. A., Lai, C. T., Rea, A., Gridneva, Z., Perrella, S. L., Wlodek, M. E. & Geddes, D. T. (2023). Nutrients, 15(17), 3729.
          9.Impact of the solubility of phenolic compounds from highland barley (Hordeum vulgare L.) on their antioxidant property and protein binding affinity. Qin, W., Wang, Y., Mouhamed, F., Hamaker, B. & Zhang, G. (2023). LWT, 186, 115251.
          10.Loss of function of Hog1 improves glycerol assimilation in Saccharomyces cerevisiae. Sone, M., Navanopparatsakul, K., Takahashi, S., Furusawa, C. & Hirasawa, T. (2023). World Journal of Microbiology and Biotechnology, 39(10), 255.
          11.Characterizing and utilizing oxygen-dependent promoters for efficient dynamic metabolic engineering. Wichmann, J., Behrendt, G., Boecker, S. & Klamt, S. (2023). Metabolic Engineering, 77, 199-207.
          12.Synergistic effect of arabinoxylan and (1, 3)(1, 4)-β-glucan reduces the starch hydrolysis rate in wheat flour. Ying, R., Zhou, T., Xie, H. & Huang, M. (2023). Food Hydrocolloids, 141, 108668.
          13.Impact of Starch-Rich Food Matrices on Black Rice Anthocyanin Accessibility and Carbohydrate Digestibility. Ou, S. J. L., Fu, A. S. & Liu, M. H. (2023). Foods, 12(4), 880.
          14.Heterologous Expression of CFL1 Confers Flocculating Ability to Cutaneotrichosporon oleaginosus Lipid-Rich Cells. Donzella, S. & Compagno, C. (2022). Journal of Fungi, 8(12), 1293.
          15.Metabolic reprogramming of OPA1-deficient cells. Dai, W., Wang, Z., Wang, Q. A., Chan, D. & Jiang, L. (2022). Cell Mol. Life Sci., 79(10), 517.

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.