Acetic Acid Assay Kit (ACS Manual Format)

Acetic Acid Assay Kit (ACS Manual Format)

Catalog Number:
CMK1462212MEG
Mfr. No.:
K-ACET
Price:
$426
  • Size:
    53 assays per kit
    Quantity:
    Add to Cart:
      • Overview
        • The Acetic Acid (ACS Manual Format) test kit is a simple method for the rapid and reliable measurement and analysis of acetic acid/acetate in foods, beverages and other materials.
          Note for Content: The number of manual tests per kit can be doubled if all volumes are halved. This can be readily accommodated using the MegaQuantTM Wave Spectrophotometer (D-MQWAVE).

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Limit of Detection: 0.14mg/L
          Storage
          Short term stability: 2-8°C
          Long term stability: See individual component labels
          Stability
          > 2 years under recommended storage conditions

          * For research use only.

      • Applications
        • Application Description
          Wine, beer, fruit and fruit juices, soft drinks, vinegar, vegetables, pickles, dairy products (e.g. cheese), meat, fish, bread, bakery products (and baking agents), ketchup, soy sauce, mayonnaise, dressings, paper (and cardboard), tea, pharmaceuticals (e.g. infusion solutions), feed and other materials (e.g. biological cultures, samples, etc.).
      • Reference
        • 1.Megazyme “advanced” wine test kits general characteristics and validation. Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.
          2.Grape and wine analysis: Oenologists to exploit advanced test kits. Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.
          3.Design of a Plant-Based Yogurt-Like Product Fortified with Hemp Flour: Formulation and Characterization. Montemurro, M., Verni, M., Rizzello, C. G. & Pontonio, E. (2023). Foods, 12(3), 485.
          4.High-throughput mass spectrometry analysis revealed a role for glucosamine in potentiating recovery following desiccation stress in Chironomus. Thorat, L., Oulkar, D., Banerjee, K., Gaikwad, S. M. & Nath, B. B. (2017). Scientific Reports, 7(1), 3659.
          5.Continuous fed-batch strategy decreases acetic acid production and increases volatile ester formation in wines under high-gravity fermentation. Deng, H., Wang, M. & Li, E. (2023). OENO One, 57(1), 363-374.
          6.Up-cycling grape pomace through sourdough fermentation: Characterization of phenolic compounds, antioxidant activity, and anti-inflammatory potential. Torreggiani, A., Demarinis, C., Pinto, D., Papale, A., Difonzo, G., Caponio, F., Pontonio, E., Verni, M. & Rizzello, C. G. (2023).. Antioxidants, 12(8), 1521.
          7.Agaricus bisporus chitosan influences the concentrations of caftaric acid and furan-derived compounds in Pinot noir juice and base wine. Mederios, J., Xu, S., Pickering, G. & Kemp, B. (2023). Oeno One, 57(3), 255-268.
          8.Growth-coupled anaerobic production of isobutanol from glucose in minimal medium with Escherichia coli. Boecker, S., Schulze, P. & Klamt, S. (2023). Biotechnology for Biofuels and Bioproducts, 16(1), 148.
          9.Combined use of Trametes versicolor extract and sourdough fermentation to extend the microbiological shelf-life of baked goods. Torreggiani, A., Beccaccioli, M., Verni, M., Cecchetti, V., Minisci, A., Reverberi, M., Pontonio, E. & Rizzello, C. G. (2023). LWT, 189, 115467.
          10.Expression and Molecular Modification of Chitin Deacetylase from Streptomyces bacillaris. Yin, L., Wang, Q., Sun, J. & Mao, X. (2023). Molecules, 28(1), 113.
          11.Consumption and Metabolism of Extracellular Pyruvate by Cultured Rat Brain Astrocytes. Denker, N., Harders, A. R., Arend, C. & Dringen, R. (2022). Neurochemical Research, 1-17.
          12.Antioxidant and Functional Features of Pre-Fermented Ingredients Obtained by the Fermentation of Milling By-Products. Siroli, L., Giordani, B., Rossi, S., Gottardi, D., McMahon, H., Augustyniak, A., Menon, A., Vannini, L., Vitali, B., Patrignan, F. & Lanciotti, R. (2022). Fermentation, 8(12), 722.
          13.Chemical composition and bioactivity of oilseed cake extracts obtained by subcritical and modified subcritical water. Švarc-Gajić, J., Rodrigues, F., Moreira, M. M., Delerue-Matos, C., Morais, S., Dorosh, O., Silva, A. M., Bassani, A., Dzedik, V. & Spigno, G. (2022). Bioresources and Bioprocessing, 9(1), 1-14.
          14.Bioconversion of cellulose into bisabolene using Ruminococcus flavefaciens and Rhodosporidium toruloides. Walls, L. E., Otoupal, P., Ledesma-Amaro, R., Velasquez-Orta, S. B., Gladden, J. M. & Rios-Solis, L. (2022). Bioresource Technology, 368, 128216.
          15.Effects of ensiling length and storage temperature on the nutritive value and fibre-bound protein of three tropical legumes ensiled alone or combined with sorghum. Aloba, T. A., Corea, E. E., Mendoza, M., Dickhoefer, U. & Castro-Montoya, J. (2022). Animal Feed Science and Technology, 283, 115172.

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.