Acetic Acid Assay Kit (Acetate Kinase Analyser Format)

Acetic Acid Assay Kit (Acetate Kinase Analyser Format)

Catalog Number:
CMK1462214MEG
Mfr. No.:
K-ACETAK
Price:
$413
  • Size:
    170.5 mL of prepared reagent (e.g. 550 assays of 0.31 mL)
    Quantity:
    Add to Cart:
      • Overview
        • The Acetic Acid analyser format test kit is suitable for the specific measurement and analysis of acetic acid (acetate) in beverages and food products. On calibration, the prepared reagent is linear to >28 micrograms of acetic acid per mL of assay solution.

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Limit of Detection: 10mg/L (recommended assay format)
          Storage
          Short term stability: 2-8°C
          Long term stability: See individual component labels
          Stability
          > 2 years under recommended storage conditions

          * For research use only.

      • Applications
        • Application Description
          Wine, beer, fruit and fruit juices, soft drinks, vinegar, vegetables, pickles, dairy products (e.g. cheese), meat, fish, bread, bakery products (and baking agents), ketchup, soy sauce, mayonnaise, dressings, paper (and cardboard), tea, pharmaceuticals (e.g. infusion solutions), feed and other materials (e.g. biological cultures, samples, etc.).
      • Reference
        • 1.Megazyme “advanced” wine test kits general characteristics and validation. Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.
          2.Grape and wine analysis: Oenologists to exploit advanced test kits. Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.
          3.Pectin acetylesterase 8 influences pectin acetylation in the seed coat, seed imbibition, and dormancy in common bean (Phaseolus vulgaris L.). Palmer, J. P., Pajak, A., Robson, B., Zhang, B., Joshi, J., Diapari, M., Puals, K. P. & Marsolais, F. Legume Science, e130.
          4.Infection/inflammation-associated preterm delivery within 14 days of presentation with symptoms of preterm labour: A multivariate predictive model. Amabebe, E., Reynolds, S., He, X., Wood, R., Stern, V. & Anumba, D. O. (2019). PLoS One, 14(9), e0222455.
          5.Separator electrode assembly (SEA) with 3-dimensional bioanode and removable air-cathode boosts microbial fuel cell performance. Oliot, M., Etcheverry, L., Mosdale, A., Basséguy, R., Delia, M. L. & Bergel, A. (2017). Journal of Power Sources, 356, 389-399.
          6.Influence of the electrode size on microbial anode performance. Oliot, M., Chong, P., Erable, B. & Bergel, A. (2017). Chemical Engineering Journal, 327, 218-227.
          7.Independent Benthic Microbial Fuel Cells Powering Sensors and Acoustic Communications with the MARS Underwater Observatory. Schrader, P. S., Reimers, C. E., Girguis, P., Delaney, J., Doolan, C., Wolf, M. & Green, D. (2016). Journal of Atmospheric and Oceanic Technology, 33(3), 607-617.
          8.Halotolerant bioanodes: The applied potential modulates the electrochemical characteristics, the biofilm structure and the ratio of the two dominant genera. Rousseau, R., Santaella, C., Bonnafous, A., Achouak, W., Godon, J. J., Delia, M. L. & Bergel, A. (2016). Bioelectrochemistry, 112, 24-32.
          9.Novel role for carbohydrate responsive element binding protein in the control of ethanol metabolism and susceptibility to binge drinking. Marmier, S., Dentin, R., Daujat‐Chavanieu, M., Guillou, H., Bertrand‐Michel, J., Gerbal‐Chaloin, S., Girard, J., Lotersztajn, S. & Postic, C. (2015). Hepatology, 62(4), 1086-1100.
          10.Comparison of synthetic medium and wastewater used as dilution medium to design scalable microbial anodes: application to food waste treatment. Blanchet, E., Desmond, E., Erable, B., Bridier, A., Bouchez, T. & Bergel, A. (2015). Bioresource Technology, 185, 106-115.
          11.Combined intracellular nitrate and NIT2 effects on storage carbohydrate metabolism in Chlamydomonas. Remacle, C., Eppe, G., Coosemans, N., Fernandez, E. & Vigeolas, H. (2014). Journal of Experimental Botany, 65(1), 23-33.
          12.Garden compost inoculum leads to microbial bioanodes with potential-independent characteristics. Cercado, B., Byrne, N., Bertrand, M., Pocaznoi, D., Rimboud, M., Achouak, W. & Bergel, A. (2013). Bioresource Technology, 134, 276-284.
          13.In vitro assessment of buffy‐coat derived platelet components suspended in SSP+ treated with the INTERCEPT Blood system. Johnson, L., Loh, Y. S., Kwok, M. & Marks, D. C. (2013). Transfusion Medicine, 23(2), 121-129.
          14.Microbial bioanodes with high salinity tolerance for microbial fuel cells and microbial electrolysis cells. Rousseau, R., Dominguez-Benetton, X., Délia, M. L. & Bergel, A. (2013). Electrochemistry Communications, 33, 1-4.
          15.Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. Gou, J. Y., Miller, L. M., Hou, G., Yu, X. H., Chen, X. Y. & Liu, C. J. (2012). The Plant Cell, 24(1), 50-65.

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.