Sucrose/D-Fructose/D-Glucose Assay Kit

Sucrose/D-Fructose/D-Glucose Assay Kit

Catalog Number:
CMK1462185MEG
Mfr. No.:
K-SUFRG
Price:
$462
  • Size:
    300 assays (100 of each) per kit
    Quantity:
    Add to Cart:
      • Overview
        • The Sucrose/D-Fructose/D-Glucose test kit is suitable for the measurement and analysis of sucrose, D-glucose and D-fructose in plant and food products.

          Sucrose, D-glucose and D-fructose are found in most plant and food products. In plant materials, D-glucose and D-fructose occur as free sugars in sucrose, and in a range of oligosaccharides (galactosyl-sucrose oligosaccharides and fructo-oligosaccharides) and polysaccharides such as fructans (inulins), starch, 1,3:1,4-β-D-glucans and cellulose.

          Note for Content: The number of manual tests per kit can be doubled if all volumes are halved. This can be readily accommodated using the MegaQuantTM Wave Spectrophotometer (D-MQWAVE).

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Limit of Detection: 1.38mg/L
          Storage
          Short term stability: 2-8°C
          Long term stability: See individual component labels
          Stability
          > 2 years under recommended storage conditions

          * For research use only.

      • Applications
        • Application Description
          Beer, fruit juices, soft drinks, milk, jam, honey, dietetic foods, bread, bakery products, dairy products, candies, desserts, confectionery, sweets, ice-cream, fruit and vegetables (e.g. potato), meat products (e.g. sausage), condiments (e.g. ketchup and mustard), feed, tobacco, cosmetics, pharmaceuticals, paper and other materials.
      • Reference
        • 1.Megazyme “advanced” wine test kits general characteristics and validation. Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.
          2.Grape and wine analysis: Oenologists to exploit advanced test kits. Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.
          3.Automatic control of chemolithotrophic cultivation of Cupriavidus necator: Optimization of oxygen supply for enhanced bioplastic production. Lambauer, V., Permann, A., Petrášek, Z., Subotić, V., Hochenauer, C., Kratzer, R. & Reichhartinger, M. (2023). Fermentation, 9(7), 619.
          4.Physicochemical changes during controlled laboratory fermentation of cocoa (CCN-51) with the inclusion of fruits and on-farm inoculation. Peña González, M. A., Ortiz Urgiles, J. P., Santander Pérez, F. A., Lazo Vélez, M. A. & Caroca Cáceres, R. S. (2023). Brazilian Journal of Food Technology, 26, e2023013.
          5.Genome‐wide transcriptional responses to water deficit during seed development in Pisum sativum, focusing on sugar transport and metabolism. Morin, A., Porcheron, B., Kodjovi, G. C., Moumen, B., Vriet, C., Maurousset, L., Lemoine, R., Pourtau, N. & Doidy, J. (2023). Physiologia Plantarum, 175(6), e14062.
          6.Land use influences the nutrient concentration and composition of pollen and nectar rewards of wildflowers in human-dominated landscapes. Pioltelli, E., Guzzetti, L., Larbi, M. O., Celano, R., Piccinelli, A. L., Galimberti, A., Biella, P. & Labra, M. (2024). Science of the Total Environment, 908, 168130.
          7.Multiscale variability in nutrients and secondary metabolites in a bat‐dispersed neotropical fruit. Gelambi, M. & Whitehead, S. R. (2023). Ecology and Evolution, 13(9), e10453.
          8.Selenium-Fortified Kombucha-Pollen Beverage by In Situ Biosynthesized Selenium Nanoparticles with High Biocompatibility and Antioxidant Activity. Tritean, N., Dima, Ș. O., Trică, B., Stoica, R., Ghiurea, M., Moraru, I., Cimpean, A., Oancea, F. & Constantinescu-Aruxandei, D. (2023). Antioxidants, 12(9), 1711.
          9.First attempt to find spectral patterns in cork oak leaves revealing the interaction of the plant with Phytophthora cinnamomi. Guerra, R., Pires, R., Brázio, A., Cavaco, A. M., Schütz, G., & Coelho, A. C. (2023), In Press.
          10.Physiological and sucrose metabolic responses to waterlogging stress in balloon flower (Platycodon grandiflorus (Jacq.) A. DC). Ji, H. S. & Hyun, T. K. (2023). Physiology and Molecular Biology of Plants, 1-10.
          11.Physiochemical Changes of European Pear cv. Conference and Asian Pear cv. Yali during Cold Storage. Híc, P., Kožíšková, J., Omastová, P., Balík, J., Goliáš, J. & Horák, M. (2023). Horticulturae, 9(3), 378.
          12.Upcycling of black currant pomace for the production of a fermented beverage with Wolfiporia cocos. Sommer, S., Hoffmann, J. L., Fraatz, M. A. & Zorn, H. (2023). Journal of Food Science and Technology, 60(4), 1313-1322.
          13.Effect of pulsed electric field pre-treatment on the debittering process of cherry kernels. Giancaterino, M., Fauster, T., Krottenthaler, A. & Jäger, H. (2022). Innovative Food Science & Emerging Technologies, 103234.
          14.The Effect of Dekkera bruxellensis Concentration and Inoculation Time on Biochemical Changes and Cellulose Biosynthesis by Komagataeibacter intermedius. Devanthi, P. V. P., Pratama, F., Kho, K., Taherzadeh, M. J. & Aslanzadeh, S. (2022). Journal of Fungi, 8(11), 1206.
          15.Use of apple pomace, glycerine, and potato wastewater for the production of propionic acid and vitamin B12. Piwowarek, K., Lipińska, E., Hać-Szymańczuk, E., Kolotylo, V. & Kieliszek, M. (2022). Applied Microbiology and Biotechnology, 106(17), 5433-5448.

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.