D-Xylose Assay Kit

D-Xylose Assay Kit

Catalog Number:
CMK1462188MEG
Mfr. No.:
K-XYLOSE
Price:
$515
  • Size:
    100 assays (manual)/1000 assays (microplate)/1300 assays (auto-analyser)
    Quantity:
    Add to Cart:
      • Overview
        • The D-Xylose test kit is a novel method for the specific, convenient and rapid measurement and analysis of D-xylose in plant extracts, culture media/supernatants and other materials.
          Note for Content: The number of manual tests per kit can be doubled if all volumes are halved. This can be readily accommodated using the MegaQuantTM Wave Spectrophotometer (D-MQWAVE).

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Limit of Detection: 0.7mg/L
          Storage
          Short term stability: 2-8°C
          Long term stability: See individual component labels
          Stability
          > 2 years under recommended storage conditions

          * For research use only.

      • Applications
        • Application Description
          Analysis of D-xylose in fermentation broths and hydrolysates of plant material and polysaccharides.
      • Reference
        • 1.Measurement of available carbohydrates in cereal and cereal products, dairy products, vegetables, fruit and related food products and animal feeds: First Action 2020.07. McCleary, B. V. & McLoughlin, C. (2021). Journal of AOAC International, qsab019.
          2.Highly-efficient lipid production from hydrolysate of Radix paeoniae alba residue by oleaginous yeast Cutaneotrichosporon oleaginosum. Xu, C., Wang, Y., Zhang, C., Liu, J., Fu, H., Zhou, W. & Gong, Z. (2024). Bioresource Technology, 391, 129990.
          3.Xylobiose treatment triggers a defense-related response and alters cell wall composition. Dewangan, B. P., Gupta, A., Sah, R. K., Das, S., Kumar, S., Bhattacharjee, S. & Pawar, P. A. M. (2023). Plant Molecular Biology, 113(6), 383-400.
          4.Recovery of Nanocellulose from Agri-Food Residues through Chemical and Physical Processes. Pirozzi, A., Pappalardo, G. & Donsì, F. (2023). Chemical Engineering Transactions, 102, 175-180.
          5.Engineering transcriptional regulation of pentose metabolism in Rhodosporidium toruloides for improved conversion of xylose to bioproducts. Coradetti, S. T., Adamczyk, P. A., Liu, D., Gao, Y., Otoupal, P. B., Geiselman, G. M., Webb-Robertson, B. J. M., Burnet, M. C., Kim, Y. M., Burnum-Johnson, K. E., Magnuson, J. & Gladden, J. M. (2023). Microbial Cell Factories, 22(1), 144.
          6.The effect of different wheat varieties and exogenous xylanase on bird performance and utilization of energy and nutrients. Whiting, I. M., Pirgozliev, V. & Bedford, M. R. (2023). Poultry Science, 102817.
          7.Green synthesis of nickel ferrite nanoparticles for efficient enhancement of lignocellulosic hydrolysate-based biohydrogen production. Zhang, Q., Cao, J., Zhao, P., Zhang, Y., Li, Y., Xu, S., Ye, C. & Qian, C. (2023). Biochemical Engineering Journal, 194, 108885.
          8.Monthly Variation in Mycosporine-like Amino Acids from Red Alga Dulse (Devaleraea inkyuleei, Formerly Palmaria palmata in Japan). Yamamoto, R., Mune Mune, M. A., Miyabe, Y., Kishimura, H. & Kumagai, Y. (2023). Phycology, 3(1), 127-137.
          9.Highly efficient fed-batch modes for enzymatic hydrolysis and microbial lipogenesis from alkaline organosolv pretreated corn stover for biodiesel production. Wang, X., Wang, Y., He, Q., Liu, Y., Zhao, M., Liu, Y., Zhou, W. & Gong, Z. (2022). Renewable Energy, 197, 1133-1143.
          10.Complete genome sequencing and identification of fiber-degrading potential in Bacillus amyloliquefaciencs strain TL106 from the Tibetan pig. Shang, Z. D., Liu, S., Duan, Y., Bao, C., Wang, J., Dong, B. & Cao, Y. H. (2022). BMC Microbiol, 22(1),186.
          11.Chemical composition and bioactivity of oilseed cake extracts obtained by subcritical and modified subcritical water. Švarc-Gajić, J., Rodrigues, F., Moreira, M. M., Delerue-Matos, C., Morais, S., Dorosh, O., Silva, A. M., Bassani, A., Dzedik, V. & Spigno, G. (2022). Bioresources and Bioprocessing, 9(1), 1-14.
          12.Arabidopsis GELP7 functions as a plasma membrane-localized acetyl xylan esterase, and its overexpression improves saccharification efficiency. Rastogi, L., Chaudhari, A. A., Sharma, R. & Pawar, P. A. M. (2022). Plant Molecular Biology, 109, 781-797.
          13.High-pressure autohydrolysis process of wheat straw for cellulose recovery and subsequent use in PBAT composites preparation. Fiorentini, C., Bassani, A., Garrido, G. D., Merino, D., Perotto, G., Athanassiou, A., Prantie, J., Halonen, N. & Spigno, G. (2022). Biocatalysis and Agricultural Biotechnology, 39, 102282.
          14.Ability of yeast metabolic activity to reduce sugars and stabilize betalains in red beet juice. Dygas, D., Nowak, S., Olszewska, J., Szymańska, M., Mroczyńska-Florczak, M., Berłowska, J., Dziugan, P. & Kręgiel, D. (2021). Fermentation, 7(3), 105.
          15.Citrulline supplementation attenuates the development of non-alcoholic steatohepatitis in female mice through mechanisms involving intestinal arginase. Rajcic, D., Baumann, A., Hernández-Arriaga, A., Brandt, A., Nier, A., Jin, C. J., S

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.