Sucrose/D-Glucose Assay Kit

Sucrose/D-Glucose Assay Kit

Catalog Number:
CMK1462186MEG
Mfr. No.:
K-SUCGL
Price:
$499
  • Size:
    250 assays per kit
    Quantity:
    Add to Cart:
      • Overview
        • The Sucrose/D-Glucose assay kit is suitable for the measurement of sucrose and D-glucose in fruit juice, beverages, honey and food products. The Sucrose/D-Glucose Test Kit employs high purity glucose oxidase, peroxidase and β-fructosidase (invertase) and can be used with confidence for the specific measurement of D-glucose and sucrose in plant and food extracts.

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Limit of Detection: 100mg/L
          Storage
          Short term stability: 2-8°C
          Long term stability: See individual component labels
          Stability
          > 2 years under recommended storage conditions

          * For research use only.

      • Applications
        • Application Description
          Beer, fruit juices, soft drinks, coffee, milk, jam, honey, dietetic foods, bread, bakery products, candies, chocolate, desserts, confectionery, ice-cream, fruit and vegetables, condiments, tobacco, cosmetics, pharmaceuticals, paper and other materials (e.g. biological cultures, samples, etc.).
      • Reference
        • 1.Megazyme “advanced” wine test kits general characteristics and validation. Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.
          2.Grape and wine analysis: Oenologists to exploit advanced test kits. Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.
          3.Generation and comprehensive analysis of Synechococcus elongatus-Aspergillus nidulans co-culture system for polyketide production. Feng, J., Li, J., Liu, D., Xin, Y., Sun, J., Yin, W. B. & Li, T. (2023). Biotechnology for Biofuels and Bioproducts, 16(1), 1-12.
          4.Manipulation of topoisomerase expression inhibits cell division but not growth and reveals a distinctive promoter structure in Synechocystis. Behle, A., Dietsch, M., Goldschmidt, L., Murugathas, W., Berwanger, L. C., Burmester, J., Yao, L., Brandt, D., Busche, T., Kalinowski, J., Hudson, E., Ebenhöh, O., Axmann, I. M. & Machné, R. (2022). Nucleic Acids Research, 50(22), 12790-12808.
          5.Effects of nitrogen levels on sucrose content, disease severity of Xanthomonas oryzae pv. oryzae and yield of hybrid rice (BC4F5). Kamhun, W., Pheng-am, S., Uppananchai, T., Ratanasut, K. & Rungrat, T. (2022). Agriculture and Natural Resources, 56(5), 909-916.
          6.Acid-assisted extraction and hydrolysis of inulin from chicory roots to obtain fructose-enriched extracts. Stökle, K., Jung, D. & Kruse, A. (2020). Biomass Conversion and Biorefinery, 1-12.
          7.Near-infrared Spectroscopy and Hyperspectral Imaging for Sugar Content Evaluation in Potatoes over Multiple Growing Seasons. Rady, A. M., Guyer, D. E. & Watson, N. J. (2020). Food Analytical Methods, 1-15.
          8.Redirecting photosynthetic electron flux in the cyanobacterium Synechocystis sp. PCC 6803 by the deletion of flavodiiron protein Flv3. Thiel, K., Patrikainen, P., Nagy, C., Fitzpatrick, D., Pope, N., Aro, E. M. & Kallio, P. (2019). Microbial Cell Factories, 18(1), 189.
          9.A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Weiss, T. L., Young, E. J. & Ducat, D. C. (2017). Metabolic Engineering, 44, 236-245.
          10.Composition, in vitro digestibility, and sensory evaluation of extruded whole grain sorghum breakfast cereals. Mkandawire, N. L., Weier, S. A., Weller, C. L., Jackson, D. S. & Rose, D. J. (2015). LWT-Food Science and Technology, 62(1), 662-667.
          11.Evaluation of sugar content in potatoes using NIR reflectance and wavelength selection techniques. Rady, A. M. & Guyer, D. E. (2015). Postharvest Biology and Technology, 103, 17-26.
          12.Rerouting carbon flux to enhance photosynthetic productivity. Ducat, D. C., Avelar-Rivas, J. A., Way, J. C. & Silver, P. A. (2012). Applied and Environmental Microbiology, 78(8), 2660-2668.
          13.Rapid quantifiable assessment of nutritional parameters influencing pediocin production by Pediococcus acidilactici NRRL B5627. Anastasiadou, S., Papagianni, M., Ambrosiadis, I. & Koidis, P. (2008). Bioresource Technology, 99(14), 6646-6650.
          14.Steam‐girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence‐associated genes. Parrott, D. L., McInnerney, K., Feller, U. & Fischer, A. M. (2007). New Phytologist, 176(1), 56-69.

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.