L-Glutamic Acid Assay Kit

L-Glutamic Acid Assay Kit

Catalog Number:
CMK1462190MEG
Mfr. No.:
K-GLUT
Price:
$347
  • Size:
    60 assays (manual)/600 assays (microplate)/700 assays (auto-analyser)
    Quantity:
    Add to Cart:
      • Overview
        • The L-Glutamic Acid test kit is a simple, reliable, rapid and accurate method for the measurement and analysis of L-glutamate (MSG) in foodstuffs.
          Note for Content: The number of manual tests per kit can be doubled if all volumes are halved. This can be readily accommodated using the MegaQuantTM Wave Spectrophotometer (D-MQWAVE).

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Limit of Detection: 0.21mg/L
          Storage
          Short term stability: 2-8°C
          Long term stability: See individual component labels
          Stability
          > 1 year under recommended storage conditions

          * For research use only.

      • Applications
        • Application Description
          Fruit and vegetables (e.g. tomato), processed fruit and vegetables (e.g. tomato puree/juice, ketchup, soy sauce), condiments, processed meat products (e.g. extracts, bouillon and sausages), soup, pharmaceuticals and other materials (e.g. biological cultures, samples, etc.).
      • Reference
        • 1.Synergistic use of fermentation and extrusion processing to design plant protein-based sausages. Valtonen, A., Aisala, H., Nisov, A., Nikinmaa, M. Honkapää, K., & Sozer, N. (2023). LWT, 184, 115067.
          2.The effect of high‐polyphenol sumac (Rhus coriaria) on food intake using sensory and appetite analysis in younger and older adults: A randomized controlled trial. Soleymani Majd, N., Coe, S., Lightowler, H. & Thondre, P. S. (2023). Food Science & Nutrition, 11(7):3833-3843.
          3.Azure A embedded in carbon dots as NADH electrocatalyst: Development of a glutamate electrochemical biosensor. Martínez-Perinán, E., Domínguez-Saldana, A., Villa-Manso, A. M., Gutiérrez-Sánchez, C., Revenga-Parra, M., Mateo-Martí, E., Parient, F. & Lorenzo, E. (2023). Sensors and Actuators B: Chemical, 374, 132761.
          4.Metabolic and Transcriptional Changes across Osteogenic Differentiation of Mesenchymal Stromal Cells. Sigmarsdottir, T. B., McGarrity, S., de Lomana, A. L. G., Kotronoulas, A., Sigurdsson, S., Yurkovich, J. T., Rolfsson, O. & Sigurjonsson, O. E. (2021). Bioengineering, 8(12), 208.
          5.Free amino acid and volatile compound profiles of jeotgal alternatives and its application to kimchi. Lee, H. J., Lee, M. J., Choi, Y. J., Park, S. J., Lee, M. A., Min, S. G., Park, S. H., Seo, H. Y. & Yun, Y. R. (2021). Foods, 10(2), 423.
          6.Infection/inflammation-associated preterm delivery within 14 days of presentation with symptoms of preterm labour: A multivariate predictive model. Amabebe, E., Reynolds, S., He, X., Wood, R., Stern, V. & Anumba, D. O. (2019). PLoS One, 14(9), e0222455.
          7.Functional characterization of a major compatible solute in Deep Sea halophilic eubacteria of active volcanic Barren Island, Andaman and Nicobar Islands, India. Anburajan, L., Meena, B., Vinithkumar, N. V., Kirubagaran, R. & Dharani, G. (2019). Infection, Genetics and Evolution, 73, 261-265.
          8.Development of a production chain from vegetable biowaste to platform chemicals. Schmidt, A., Sturm, G., Lapp, C. J., Siebert, D., Saravia, F., Horn, H., Ravi, P. P. Lemmer, A. & Gescher, J. (2018). Microbial Cell Factories, 17(1), 90.
          9.Genetic, enzymatic and metabolite profiling of the Lactobacillus casei group reveals strain biodiversity and potential applications for flavour diversification. Stefanovic, E., Kilcawley, K. N., Rea, M. C., Fitzgerald, G. F. & McAuliffe, O. (2017). Journal of Applied Microbiology, 122(5), 1245-1261.
          10.Metabolic engineering of the mixed-acid fermentation pathway of Escherichia coli for anaerobic production of glutamate and itaconate. Vuoristo, K. S., Mars, A. E., Sangra, J. V., Springer, J., Eggink, G., Sanders, J. P. & Weusthuis, R. A. (2015). AMB Express, 5(1), 61.
          11.Production of stable quinine nanodispersions using esterified γ-polyglutamic acid biopolymer. Hoennscheidt, C., Kreyenschulte, D., Margaritis, A. & Krull, R. (2013). Biochemical Engineering Journal, 79, 259-266.
          12.Gamma-amino butyric acid, glutamate dehydrogenase and glutamate decarboxylase levels in phylogenetically divergent plants. Seher, Y., Filiz, O. & Melike, B. (2013). Plant Systematics and Evolution, 299(2), 403-412.
          13.The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. El-kereamy, A., Bi, Y. M., Ranathunge, K., Beatty, P. H., Good, A. G. & Rothstein, S. J. (2012). PloS one, 7(12), e52030.
          14.Astrocytic glutamate transporter-dependent neuroprotection against glutamate toxicity: An in vitro study of maslinic acid. Qian, Y., Guan, T., Tang, X., Huang, L., Huang, M., Li, Y., Sun, H., Yu, R. & Zhang, F. (2011). European Journal of Pharmacology, 651(1-3), 59-65.
          15.Surfactant to dye binding degree based approach for the selective determination of L-glutamate in foodstuffs. Pedraza, A., Sicilia, M. D., Rubio, S. & Pérez-Bendito, D. (2007). Analytical and Bioanalytical Chemistry, 389(7-8), 2297-2302.

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.