D-Gluconic Acid/D-Glucono-δ-lactone Assay Kit

D-Gluconic Acid/D-Glucono-δ-lactone Assay Kit

Catalog Number:
CMK1462172MEG
Mfr. No.:
K-GATE
Price:
$511
  • Size:
    60 assays (manual)/600 assays (microplate)/600 assays (auto-analyser)
    Quantity:
    Add to Cart:
      • Overview
        • The D-Gluconic Acid/D-Glucono-δ-lactone test kit is suitable for the specific measurement and analysis of D-gluconic acid/D-gluconolactone in foods and beverages.

          Note for Content: The number of manual tests per kit can be doubled if all volumes are halved. This can be readily accommodated using the MegaQuantTM Wave Spectrophotometer (D-MQWAVE).

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Limit of Detection: 0.792mg/L
          Storage
          Short term stability: 2-8°C
          Long term stability: See individual component labels
          Stability
          > 2 years under recommended storage conditions

          * For research use only.

      • Applications
        • Application Description
          Wine, meat, processed meat (e.g. additives), fruit juice, dairy products, pharmaceuticals, paper and other materials (e.g. biological cultures, samples, etc.).
      • Reference
        • 1.Megazyme “advanced” wine test kits general characteristics and validation. Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.
          2.Grape and wine analysis: Oenologists to exploit advanced test kits. Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.
          3.The Effect of Dekkera bruxellensis Concentration and Inoculation Time on Biochemical Changes and Cellulose Biosynthesis by Komagataeibacter intermedius. Devanthi, P. V. P., Pratama, F., Kho, K., Taherzadeh, M. J. & Aslanzadeh, S. (2022). Journal of Fungi, 8(11), 1206.
          4.Candidate Acetic Acid Bacteria Strains for Levan Production. Anguluri, K., La China, S., Brugnoli, M., De Vero, L., Pulvirenti, A., Cassanelli, S. & Gullo, M. (2022). Polymers, 14(10), 2000.
          5.Host factors modulating Ochratoxin A biosynthesis during fruit colonization by Aspergillus carbonarius. Maor, U., Barda, O., Sadhasivam, S., Bi, Y., Zakin, V., Prusky, D. B. & Sionov, E. (2021). J. Fungi, 7(1), 10.
          6.Uncovering a superfamily of nickel-dependent hydroxyacid racemases and epimerases. Desguin, B., Urdiain-Arraiza, J., Da Costa, M., Fellner, M., Hu, J., Hausinger, R. P., Desmet, T., Hols, P. & Soumillion, P. (2020). Scientific Reports, 10(1), 1-11.
          7.The pH-Responsive Transcription Factor PacC Governs Pathogenicity and Ochratoxin A Biosynthesis in Aspergillus carbonarius. Barda, O., Maor, U., Sadhasivam, S., Bi, Y., Zakin, V., Prusky, D. & Sionov, E. (2020). Frontiers in Microbiology, 11, 210.
          8.A simple enzymatic assay for the quantification of C1-specific cellulose oxidation by lytic polysaccharide monooxygenases. Keller, M. B., Felby, C., Labate, C. A., Pellegrini, V. O. A., Higasi, P., Singh, R. K., Polikarpov, I. & Blossom, B. M. (2020). Biotechnology Letters, 42(1), 93-102.
          9.A 2-year multisite study of viticultural and environmental factors affecting rotundone concentration in Duras red wine. Geffroy, O., Descôtes, J., Levasseur-Garcia, C., Debord, C., Denux, J. P. & Dufourcq, T. (2019). OENO One, 53(3).
          10.Eurypsychrophilic Pseudomonas spp. isolated from Venezuelan tropical glaciers as promoters of wheat growth and biocontrol agents of plant pathogens at low temperatures. Rondón, J. J., Ball, M. M., Castro, L. T. & Yarzábal, L. A. (2019). Environmental Sustainability, 2(3), 265-275.
          11.Specific molecular interactions between vitis vinifera and botrytis cinerea are required for noble rot development in grape berries. Lovato, A., Zenoni, S., Tornielli, G. B., Colombo, T., Vandelle, E. & Polverari, A. (2019). Postharvest Biology and Technology, 156, 110924.
          12.Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25. Ryngajłło, M., Jacek, P., Cielecka, I., Kalinowska, H. & Bielecki, S. (2019). Applied Microbiology and Biotechnology, 103(16), 6673-6688.
          13.Strain Serratia sp. S119: A potential biofertilizer for peanut and maize and a model bacterium to study phosphate solubilization mechanisms. Ludueña, L. M., Anzuay, M. S., Angelini, J. G., McIntosh, M., Becker, A., Rupp, O., Goesmann, A., Blom, J., Fabra, A. & Taurian, T. (2018). Applied Soil Ecology, In Press.
          14.An accurate description of Aspergillus niger organic acid batch fermentation through dynamic metabolic modelling. Upton, D. J., McQueen-Mason, S. J. & Wood, A. J. (2017). Biotechnology for Biofuels, 10(1), 258.
          15.Expressing accessory proteins in cellulolytic Yarrowia lipolytica to improve the conversion yield of recalcitrant cellulose. Guo, Z. P., Duquesne, S., Bozonnet, S., Nicaud, J. M., Marty, A. & O’Donohue, M. J. (2017). Biotechnology for Biofuels, 10(1), 298.

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.