Ascorbic Acid Assay Kit (L-Ascorbate)

Ascorbic Acid Assay Kit (L-Ascorbate)

Catalog Number:
CMK1462216MEG
Mfr. No.:
K-ASCO
Price:
$366
  • Size:
    40 assays (manual)/400 assays (microplate)/400 assays (auto-analyser)
    Quantity:
    Add to Cart:
      • Overview
        • The Ascorbic Acid (L-Ascorbate) assay kit is for the specific measurement and analysis of L-ascorbic acid in beverages, meat, flour, dairy and vegetable products.
          Note for Content: The number of manual tests per kit can be doubled if all volumes are halved. This can be readily accommodated using the MegaQuantTM Wave Spectrophotometer (D-MQWAVE).

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Limit of Detection: 0.175mg/L
          Storage
          Short term stability: 2-8°C
          Long term stability: See individual component labels
          Stability
          > 2 years under recommended storage conditions

          * For research use only.

      • Applications
        • Application Description
          Wine, beer, fruit juices, soft drinks, jam, milk, dairy products (e.g. cheese), dietetic foods, baby foods, processed meat, baking additives, fruit and vegetables (e.g. tomato and potato), pharmaceuticals, feed and other materials (e.g. biological cultures, samples, etc.).
      • Reference
        • 1.Megazyme “advanced” wine test kits general characteristics and validation. Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.
          2.Grape and wine analysis: Oenologists to exploit advanced test kits. Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.
          3.Sugar-Triggered Burst Drug Releasing Poly-Lactic Acid (PLA) Microneedles and Its Fabrication Based on Solvent-Casting Approach. Kang, S., Song, J. E., Jun, S. H., Park, S. G. & Kang, N. G. (2022). Pharmaceutics, 14(9), 1758.
          4.Evaluation of physicochemical, sensory, and antimicrobial properties of small-scale produced fruit vinegars. Benedek, C., Szakolczi, O., Makai, G., Kiskó, G. & Kókai, Z. (2022). Acta Alimentaria, 51(1), 1-10.
          5.Ripening assessment of ‘Ortanique’ (Citrus reticulata Blanco x Citrus sinensis (L) Osbeck) on tree by SW-NIR reflectance spectroscopy-based calibration models. Pires, R., Guerra, R., Cruz, S. P., Antunes, M. D., Brázio, A., Afonso, A. M., Daneil, M., Panagopoulos, T., Goncalves, I. & Cavaco, A. M. (2022). Postharvest Biology and Technology, 183, 111750.
          6.Antioxidant properties and sensory evaluation of microgreens from commercial and local farms. Tan, L., Nuffer, H., Feng, J., Kwan, S. H., Chen, H., Tong, X. & Kong, L. (2020). Food Science and Human Wellness, 9(1), 45-51.
          7.Impact of heat treatment and flavorings on the antioxidant capacity of black and green tea. Bodor, Z., Pergel, B. & Benedek, C. (2020). Progress in Agricultural Engineering Sciences, In Press.
          8.Fermentation of blackberry with L. plantarum JBMI F5 enhance the protection effect on uvb-mediated photoaging in human foreskin fibroblast and hairless mice through regulation of MAPK/NF-κB signaling. Kim, H. R., Jeong, D. H., Kim, S., Lee, S. W., Sin, H. S., Yu, K. Y., Jeong, S-I. & Kim, S. Y. (2019). Nutrients, 11(10), 2429.
          9.Sous‐Vide technique as an alternative to traditional cooking methods in the context of antioxidant properties of brassica vegetables. Florkiewicz, A., Socha, R., Filipiak‐Florkiewicz, A. & Topolska, K. (2018). Journal of the Science of Food and Agriculture, In Press.
          10.Before and after potato virus Y necrotic strains (PVYN) inoculation. Bădărău, L. C., Nina, B., Maria, Ș. & Radu, H. (2017). Journal of Hygienic Engineering and Design, 19, 58-63.
          11.Evaluation of vitamin C content in samples from ten potato cultivars inoculated with potato virus Y (Necrotic strains). Badarau, C. L., Tican, A., stefan, M. & Chiru, N. (2017). Scientific Papers-Series A-Agronomy, 60, 197-202.
          12.Dual release of a hydrophilic and a hydrophobic osteogenic factor from a single liposome. Monteiro, N., Martins, A., Pires, R. A., Faria, S., Fonseca, N. A., Moreira, J. N., Reis, R. L. & Neves, N. M. (2016). RSC Advances, 6(115), 114599-114612.
          13.The influence of harvest period and fruit ripeness at harvest on minimally processed cactus pears (Opuntia ficus-indica L. Mill.) stored under passive atmosphere. Allegra, A., Sortino, G., Miciletta, G., Riotto, M., Fasciana, T. & Inglese, P. (2015). Postharvest Biology and Technology, 104, 57-62.
          14.Evaluation of substitutes for rock wool as growing substrate for hydroponic tomato production. Dannehl, D., Suhl, J., Ulrichs, C. & Schmidt, U. (2015). Journal of Applied Botany and Food Quality, 88(1).
          15.Polyphenols, carotenoids, vitamin c content in tropical fruits and vegetables and impact of processing methods. Ellong, E. N., Billard, C., Adenet, S. & Rochefort, K. (2015). Food and Nutrition Sciences, 6(03), 299.

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.