Formic Acid Assay Kit

Formic Acid Assay Kit

Catalog Number:
CMK1462218MEG
Mfr. No.:
K-FORM
Price:
$416
  • Size:
    25 assays (manual)/250 assays (microplate)/220 assays (auto-analyser)
    Quantity:
    Add to Cart:
      • Overview
        • The Formic Acid test kit is a simple method for the rapid, reliable measurement and analysis of formic acid (formate) in foods, beverages and other materials.
          Note for Content: The number of manual tests per kit can be doubled if all volumes are halved. This can be readily accommodated using the MegaQuantTM Wave Spectrophotometer (D-MQWAVE).

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Limit of Detection: 0.0932mg/L
          Storage
          Short term stability: 2-8°C
          Long term stability: See individual component labels
          Stability
          > 2 years under recommended storage conditions

          * For research use only.

      • Applications
        • Application Description
          Wine, fruit juices, pickles, vinegar, jam, bakery products, honey, fish, meat and other materials (e.g. biological cultures, samples, etc.).
      • Reference
        • 1.Megazyme “advanced” wine test kits general characteristics and validation. Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.
          2.Grape and wine analysis: Oenologists to exploit advanced test kits. Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.
          3.The phenotype and genotype of fermentative prokaryotes. Hackmann, T. J. & Zhang, B. (2023). Science Advances, 9(39), eadg8687.
          4.Formate Utilization by the Crenarchaeon Desulfurococcus amylolyticus. Ergal, I., Reischl, B., Hasibar, B., Manoharan, L., Zipperle, A., Bochmann, G., Fuchs, W. & Rittmann, S. K. M. (2020). Microorganisms, 8(3), 454.
          5.Assessment of β-glucans, phenols, flavor and volatile profiles of hulless barley wine originating from highland areas of China. Zhang, K., Yang, J., Qiao, Z., Cao, X., Luo, Q., Zhao, J., Wang, F. & Zhang, W. (2019). Food Chemistry, 293, 32-40.
          6.Acetate metabolism and the inhibition of bacterial growth by acetate. Pinhal, S., Ropers, D., Geiselmann, J. & de Jong, H. (2019). Journal of Bacteriology, 201(13).
          7.Conversion of Escherichia coli to generate all biomass carbon from CO2. Gleizer, S., Ben-Nissan, R., Bar-On, Y. M., Antonovsky, N., Noor, E., Zohar, Y., Jona, G., Krieger, E., Shamshoum, M., Bar-Even, A. & Milo, R. (2019). Cell, 179(6), 1255-1263.
          8.Coordinative Binding of Polymers to Metal-Organic Framework Nanoparticles for Control of Interactions at the Biointerface. Zimpel, A., Al Danaf, N., Steinborn, B., Kuhn, J., Höhn, M., Bauer, T., Hirschle, P., Schrimpf, W., Engelke, H., Wagner, E., Barz, M., Lamb, D. C., Lächelt, U. & Wuttke, S. (2019). ACS Nano, 13(4), 3884-3895.
          9.Tuning the Composition of Electrodeposited Bimetallic Tin-Lead Catalysts for Enhanced Activity and Durability in Carbon Dioxide Electroreduction to Formate. Gyenge, E. & Moore, C. (2017). ChemSusChem, 10(17), 3512–3519.
          10.Relative contributions of Dehalobacter and zerovalent iron in the degradation of chlorinated methanes. Lee, M., Wells, E., Wong, Y. K., Koenig, J., Adrian, L., Richnow, H. H. & Manefield, M. (2015). Environmental Science & Technology, 49(7), 4481-4489.
          11.Postharvest control of western flower thrips (Thysanoptera: Thripidae) and California red scale (Hemiptera: Diaspididae) with ethyl formate and its impact on citrus fruit quality. Pupin, F., Bikoba, V., Biasi, W. B., Pedroso, G. M., Ouyang, Y., Grafton-Cardwell, E. E. & Mitcham, E. J. (2013). Journal of Economic Entomology, 106(6), 2341-2348.

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.