D-Mannose/D-Fructose/D-Glucose Assay kit

D-Mannose/D-Fructose/D-Glucose Assay kit

Catalog Number:
CMK1462181MEG
Mfr. No.:
K-MANGL
Price:
$469
  • Size:
    55 assays per kit
    Quantity:
    Add to Cart:
      • Overview
        • The D-Mannose/D-Fructose/D-Glucose test kit is suitable for the specific measurement and analysis of D-mannose, D-fructose and D-glucose in plant products and in acid hydrolysates of polysaccharides.
          Note for Content: The number of manual tests per kit can be doubled if all volumes are halved. This can be readily accommodated using the MegaQuantTM Wave Spectrophotometer (D-MQWAVE).

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Limit of Detection: ~0.7mg/L
          Storage
          Short term stability: 2-8°C
          Long term stability: See individual component labels
          Stability
          > 2 years under recommended storage conditions

          * For research use only.

      • Applications
        • Application Description
          Foodstuffs, yeast cell preparations, enzymatic hydrolysates and other materials (e.g. biological cultures, samples, etc.).
      • Reference
        • 1.Identification and characterization of an α-1, 3 mannosidase from Elizabethkingia meningoseptica and its potential attenuation impact on allergy associated with cross-reactive carbohydrate determinant. Shen, D., Lu, X., Li, W., Zou, L., Tong, Y., Wang, L., Rao, L., Zhang, Y, Hou, L., Sun, G, & Chen, L. (2023). Biochemical and Biophysical Research Communications. (2023). Journal of Biochemical and Biophysical Research communications, 672, 17-26.
          2.Structural and functional characterization of a multi-domain GH92 α-1, 2-mannosidase from Neobacillus novalis. Kołaczkowski, B. M., Moroz, O. V., Blagova, E., Davies, G. J., Møller, M. S., Meyer, A. S., Westh, K., Jensen, K., Wilson, K. S. & Krogh, K. B. (2023). Acta Crystallographica Section D: Structural Biology, 79(5), 387-400.
          3.Analysis of the galactomannan binding ability of β-mannosidases, BtMan2A and CmMan5A, regarding their activity and synergism with a β-mannanase. Malgas, S., Thoresen, M., Moses, V., Prinsloo, E., van Dyk, J. S. & Pletschke, B. I. (2022). Computational and Structural Biotechnology Journal, 20, 3140-3150.
          4.The protective effect of Scenedesmus dimorphus polysaccharide as an antioxidant and antiaging agent on aging rat model induced by D-galactose. Armaini, A. & Imelda, I. (2021). Journal of Applied Pharmaceutical Science, 11(05), 054-063.
          5.Evolution of mutualistic behaviour between Chlorella sorokiniana and Saccharomyces cerevisiae within a synthetic environment. Oosthuizen, J. R., Naidoo, R. K., Rossouw, D. & Bauer, F. F. (2020). Journal of Industrial Microbiology & Biotechnology, 47(4-5), 357-372.
          6.Immunotherapy based on Pythium insidiosum mycelia drives a Th1/Th17 response in mice. Tondolo, J. S., Loreto, E. S., de Jesus, F. P., Ledur, P. C., Verdi, C. M., & Santurio, J. M. (2020). Medical Mycology, 58(8), 1120-1125.
          7.Combined Yeast Cultivation and Pectin Hydrolysis as an Effective Method of Producing Prebiotic Animal Feed from Sugar Beet Pulp. Wilkowska, A., Berlowska, J., Nowak, A., Motyl, I., Antczak-Chrobot, A., Wojtczak, M., Kunicka-Styczyńska, A., Binczarski, M. & Dziugan, P. (2020). Biomolecules, 10(5), 724.
          8.Lysates of Metschnikowia Yeast with Higher Content of Hydroxyproline. Pawlikowska, E., Szymanska, M., Berlowska, J. & Kregiel, D. (2020). BioResources, 15(2), 3228-3236.
          9.Effect of pulsed electric fields on mannoproteins release from Saccharomyces cerevisiae during the aging on lees of Caladoc red wine. Maza, M. A., Delso, C., Álvarez, I., Raso, J. & Martínez, J. M. (2020). LWT, 118, 108788.
          10.Vegetable wastes derived polysaccharides as natural eco-friendly plasticizers of sodium alginate. Di Donato, P., Taurisano, V., Poli, A., d’Ayala, G. G., Nicolaus, B., Malinconinco, M. & Santagata, G. (2020). Carbohydrate polymers, 229, 115427.
          11.Cross-linking of diluted alkali-soluble pectin from apple (Malus domestica fruit) in different acid-base conditions. Gawkowska, D., Cieśla, J., Zdunek, A. & Cybulska, J. (2019). Food Hydrocolloids, 92, 285-292.
          12.A Bacteroidetes locus dedicated to fungal 1,6-β-glucan degradation: unique substrate conformation drives specificity of the key endo-1,6-β-glucanase. Temple, M. J., Cuskin, F., Baslé, A., Hickey, N., Speciale, G., Williams, S. J., Gilbert, H. J. & Lowe, E. C. (2017). Journal of Biological Chemistry, jbc-M117.
          13.Use of almond shell as food ingredient. Kacem, I., Martinez-Saez, N., Kallel, F., Khawla, J. B., Claire, H. B., Semia, C. E. & del Castillo, M. D. (2017). European Food Research and Technology, 1-12.
          14.The carbon consumption pattern of the spoilage yeast Brettanomyces bruxellensis in synthetic wine-like medium. Smith, B. D. & Divol, B. (2017). Food Microbiology, 73, 39-48.
          15.Cell lysis induced by membrane-damaging detergent saponins from Quillaja saponaria. Berlowska, J., Dudkiewicz, M., Kregiel, D., Czyzowska, A. & Witonska, I. (2015). Enzyme and Microbial Technology, 75, 44-48.

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.