Zinc Oxide Quantum Dot INK DMAC

Zinc Oxide Quantum Dot INK DMAC

Catalog Number:
ZON1344461NAN
Mfr. No.:
ZnO-dmac-ink-5; ZnO-dmac-ink-10; ZnO-dmac-ink-25
Price:
$515
  • Size:
    Quantity:
    Add to Cart:
      • Overview
        • Zinc Oxide Quantum Dots-based ink (ZnO-DMAC ink)
          High-quality Uncoated Zinc Oxide Quantum Dots Nanocolloid
          Monodispersed, narrow size distribution, solution-stable, bright yellow luminescence upon excitation with UV.
          • Superior nanocrystal quality in comparison to sol-gel derived ZnO QDs
          • Superrior nanocolloidal solution - no agglomeration in time
          • Lack of bulky organic coating - excellent electrical contact
          • No surface defects - improved charge separation and stability
          • High-purity ZnO Nanoparticles without any added process metal impurities

          Please contact us at for specific academic pricing.

      • Properties
        • Categories
          ZnO Inks for Electronics
          Appearance
          Transparent nanocolloid
          Concentration
          4 mg/ml
          Purity
          Standard purity
          Electronic purity upon request
          Solubility
          Colloidal solution in DMaC
          Other Properties
          Excitation: 355 nm ± 5 nm
          Emission (max.): 553 nm ± 5 nm
          FWHM: 135 nm ± 5 nm
          Core size: 2 - 10 nm
          Typical mean size: ~5 nm
          Methods of deposition: Spin coating; Dip coating; Spray Coating; Ink jet
          Post-deposition treatment: Thermal heating at >70°C to remove DMAC
          Chemical compatibility: All the absorbers and emitters including perovskites

          * PRODUCT INTENDED FOR RESEARCH AND DEVELOPMENT PURPOSES ONLY. NOT INTENDED FOR ANY ANIMAL OR HUMAN THERAPEUTIC OR DIAGNOSTIC USE.

      • Applications
        • Application Description
          Photovoltaics (perovskites and organics), OLED, QLED
          Sensors
          Printed electronics
          Catalyst

          Functions: Electron transfer; Electron injection; Hole blocking; Sensing material
      • Reference
        • Chavan, R. D., Wolska‐Pietkiewicz, M., Prochowicz, D., Jędrzejewska, M., Tavakoli, M. M., Yadav, P., Hong, C., Lewiński, J. (2022). Organic Ligand‐Free ZnO Quantum Dots for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2205909. https://doi.org/10.1002/adfm.202205909
          Prochowicz, D., Tavakoli, M. M., Wolska-Pietkiewicz, M., Jędrzejewska, M., Trivedi, S., Kumar, M., Zakeeruddin, M., Lewiński, J., Graetzel, M., Yadav, P. (2020). Suppressing recombination in perovskite solar cells via surface engineering of TiO2 ETL. Solar Energy, 197(December 2019), 50-57. https://doi.org/10.1016/j.solener.2019.12.070
          Lee, D., Wolska-Pietkiewicz, M., Badoni, S., Grala, A., Lewiński, J., & De Paëpe, G. (2019). Disclosing Interfaces of ZnO Nanocrystals Using Dynamic Nuclear Polarization: Sol-Gel versus Organometallic Approach. Angewandte Chemie - International Edition, 58(48), 17163-17168. https://doi.org/10.1002/anie.201906726
          Grala, A., Wolska-Pietkiewicz, M., Danowski, W., Wróbel, Z., Grzonka, J., & Lewiński, J. (2016). ‘Clickable’ ZnO nanocrystals: the superiority of a novel organometallic approach over the inorganic sol-gel procedure. Chem. Commun., 52(46), 7340-7343. https://doi.org/10.1039/C6CC01430E

    Documents

    Specification

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.