Malachite Green Phosphate Assay Kit

Malachite Green Phosphate Assay Kit

Catalog Number:
HTSA373925BIO
Mfr. No.:
BIO-POMG-25H
Price:
$412
  • Size:
    2500 tests
    Quantity:
    Add to Cart:
      • Overview
        • The Malachite Green Phosphate Assay Kit is based on quantification of the green complex formed between Malachite Green, molybdate and free orthophosphate. The rapid color formation from the reaction can be conveniently measured on a spectrophotometer (600 – 660 nm) or on a plate reader. The non-radioactive colorimetric assay kits have been optimized to offer superior sensitivity and prolonged shelf life. The assay is simple and fast, involving a single addition step for phosphate determination. Assays can be executed in tubes, cuvettes or multi-well plates. The assays can be conveniently performed in 96- and 384-well plates for high-throughput screening of enzyme inhibitors.

          Key Features
          ▪ Reagent very stable. Due to our innovative formulation, no precipitation of reagent occurs. Therefore no filtration of reagent is needed prior to assays, as is often required with other commercial kits.
          ▪ High sensitivity and wide detection range: detection of as little of 1.6 pmoles of phosphate and useful range between 0.02 µM and 40 µM phosphate.
          ▪ Fast and convenient: homogeneous “mix-and-measure” assay allows quantitation of free phosphate within 20 minutes.
          ▪ Compatible with routine laboratory and HTS formats: assays can be performed in tubes, cuvettes or microplates, on spectrophotometers and plate readers.Robust and amenable to HTS: Z factors of 0.7 to 0.9 are observed in 96-well and 384-well plates. Can be readily automated on HTS liquid handling systems.

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Method: OD620nm (malachite green)
          Samples: Biological, environment etc
          Species: All
          Procedure: 30 min
          Detection Limit: 0.02 µM
          Shelf Life: 12 months
          Storage
          4°C

          * For Research Use Only

      • Applications
        • Application Description
          For sensitive and high-throughput phosphate determination.
      • Reference
        • Zhao, JY et al (2020). Atherogenic diet accelerates ectopic mineralization in a mouse model of pseudoxanthoma elasticum. International Journal of Dermatology and Venereology, 3(2), 91-96. Assay: Phosphate in serum mouse.
          Lee, JS et al (2020). Host surface ectonucleotidase-CD73 and the opportunistic pathogen, Porphyromonas gingivalis, cross-modulation underlies a new homeostatic mechanism for chronic bacterial survival in human epithelial cells. Virulence, 11(1), 414-429. Assay: Phosphate in human epithelial cells.
          Chauhan, AS et al (2019). Trafficking of a multifunctional protein by endosomal microautophagy: Linking two independent unconventional secretory pathways. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 33(4), 5626-5640. Assay: Phosphate in mouse cell culture supernatant.
          Dangi, P et al (2019). Natural product inspired novel indole based chiral scaffold kills human malaria parasites via ionic imbalance mediated cell death. Scientific Reports, 9(1), 17785. Assay: Phosphate in plasmodium falciparum membrane fraction.
          Wang, X et al (2020). The antitumor agent ansamitocin p-3 binds to cell division protein ftsz in actinosynnema pretiosum. Biomolecules, 10(5). Assay: Phosphate in actinosynnema pretiosum.
          Ju, S et al (2020). Oxygenated polycyclic aromatic hydrocarbons from ambient particulate matter induce electrophysiological instability in cardiomyocytes. Particle and Fibre Toxicology, 17(1), 25. Assay: Phosphate in rat cardiomyocyte microsome membranes.
          Updegrove, TB et al (2021). Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function. ELife, 10. Assay: Phosphate in bacillus subtilis GTPase reaction mixture.
          Wang, J et al (2020). Tumor-responsive, multifunctional CAR-NK cells cooperate with impaired autophagy to infiltrate and target glioblastoma. BioRxiv, 2020.10.07.330043. Assay: Phosphate in mouse cells.
          Afshar, N et al (2021). A novel motif of Rad51 serves as an interaction hub for recombination auxiliary factors. ELife, 10. Assay: Phosphate in schizosaccharomyces pombe proteins.
          Ito, K et al (2020). Real-time tracking reveals catalytic roles for the two DNA binding sites of Rad51. Nature Communications, 11(1), 2950. Assay: Phosphate in schizosaccharomyces pombe proteins.
          Moore, M., Moriarty, T. A., Connolly, G., Mermier, C., Amorim, F., Miller, K., & Zuhl, M. (2019). Oral Glutamine Supplement Reduces Subjective Fatigue ratings during Repeated Bouts of Firefighting Simulations. Safety 5(2), 38. Assay: Antioxidant in human serum.
          Soni, V et al (2015). Depletion of M. tuberculosis GlmU from Infected Murine Lungs Effects the Clearance of the Pathogen. PLoS Pathog 11(10):e1005235. Assay: Phosphate in bacteria enzyme.
          Taib, Izatus Shima, et al.(2015) "Palm oil tocotrienol-rich fraction attenuates testicular toxicity induced by fenitrothion via an oxidative stress mechanism." Toxicology Research 4.1: 132-142. Assay: Sialic Acid in rat testis.
          Aldana-Masangkay GI,et al (2011). Tubacin suppresses proliferation and induces apoptosis of acute lymphoblastic leukemia cells. Leuk Lymphoma. 52(8):1544-55. Assay: Phosphate in human cell.
          Cha C, et al (2011). Integrative design of a poly(ethylene glycol)-poly(propylene glycol)-alginate hydrogel to control three dimensional biomineralization. Biomaterials.32(11):2695-703. Assay: Phosphate in hydrogels.
          Demidenko AA, et al (2011). Effects of viscogens on RNA transcription inside reovirus particles. J Biol Chem. 286(34):29521-30. Assay: Phosphate in mouse enzyme extract.
          Khuda-Buksh, AR. et al. (2011). Analysis of the capability fo ultra-highly diluted glucose to increase glucose uptake in arsenite-streesed bacteria Escherichia coli. J, Chin. Integrative Medicine 9(8): 901-912. Assay: phosphate in bacteria cell lysate.
          Lin J, Wilson MA (2011). Escherichia coli thioredoxin-like protein YbbN contains an atypical tetratricopeptide repeat motif and is a negative regulator of GroEL. J. Biol Chem. 286(22):19459-69. Assay: Phosphate in bacteria enzyme.
          Lin J, Wilson MA (2011). Escherichia coli thioredoxin-like protein YbbN contains an atypical tetratricopeptide repeat motif and is a negative regulator of GroEL. J. Biol Chem. 286(22):19459-69. Assay: Phosphate in plant extracts.
          Liu et al (2011). Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content. Functional Ecology 25:910-920. Assay: Phosphate in plant extracts.
          Reigan P, et al (2011). A mechanistic and structural analysis of the inhibition of the 90-kDa heat shock protein by the benzoquinone and hydroquinone ansamycins. Mol Pharmacol. 79(5):823-32. Assay: Phosphate in human Hsp90.
          Hsieh CW, et al (2010). Direct MinE-membrane interaction contributes to the proper localization of MinDE in E. coli. Mol Microbiol. 75(2):499-512. Assay: Phosphate in bacteria ATPase, GTPase.
          Hu, M et al. (2010) Effect of prolonged starvation on body weight and blood-chemistry in two horseshoe crab species: Tachypleus tridentatus and Carcinoscorpius rotundicauda (Chelicerata: Xiphosura). J. Exp Marine Biol Ecology 395(1-2):112-119. Assay: Cholesterol in crab plasma.
          Li Q, Uitto J (2010). The mineralization phenotype in Abcc6 ( -/- ) mice is affected by Ggcx gene deficiency and genetic background--a model for pseudoxanthoma elasticum. J Mol Med (Berl). 88(2):173-81. Assay: Phosphate in mouse tissue.
          Yoshida C et al (2010). Analysis of inhibition of topoisomerase IIalpha and cancer cell proliferation by ingenolEZ. Cancer Sci. 101(2):374-8. Assay: Phosphate in bacteria DNA hydrolysis (S. thermophilus).
          Yoshida C, et al (2010). Analysis of inhibition of topoisomerase IIalpha and cancer cell proliferation by ingenolEZ. Cancer Sci. 101(2):374-8. Assay: Phosphate in human topoisomerase.
          Barisic S, et al (2008). Identification of PP2A as a crucial regulator of the NF-kappaB feedback loop: its inhibition by UVB turns NF-kappaB into a pro-apoptotic factor. Cell Death Differ. 15(11):1681-90. Assay: Phosphate in human cell lysate, PP2A.
          Adkins, M.W. et al (2007). Chromatin Disassembly from the PHO5 Promoter Is Essential for the Recruitment of the General Transcription Machinery and Coactivators. Mol. Cell. Biol. 27: 6372-6382. Assay: Phosphate in yeast culture.
          Anand SP, et al (2007). DNA helicase activity of PcrA is not required for the displacement of RecA protein from DNA or inhibition of RecA-mediated strand exchange. J Bacteriol. 189(12):4502-9. Assay: Phosphate in bateria enzyme.
          Guerette D et al (2007). Molecular evolution of type VI intermediate filament proteins. BMC Evolutionary Biology 7:164. Assay: Phosphate in bacteria GTP hydrolysis.
          Guerette, D. et al (2007). Molecular evolution of type VI intermediate filament proteins. BMC Evolutionary Biology 7:164. Assay: Phosphate in human ATPase, GTPase.
          Koroleva O, et al (2007). Structural conservation of RecF and Rad50: implications for DNA recognition and RecF function. EMBO J. 26(3):867-77. Assay: Phosphate in bacteria enzyme.
          Lu B, et al (2007). Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J Biol Chem. 282(24):17363-74. Assay: Phosphate in human enzyme.
          Blumental-Perry A, et al (2006). Phosphatidylinositol 4-phosphate formation at ER exit sites regulates ER export. Dev Cell. 11(5):671-82. Assay: Phosphate in rat liposomes.
          Guo W, et al (2006). The bioreduction of a series of benzoquinone ansamycins by NAD(P)H:quinone oxidoreductase 1 to more potent heat shock protein 90 inhibitors, the hydroquinone ansamycins. Mol Pharmacol. 70(4):1194-203. Assay: Phosphate in yeast purified ATPase.
          Saran, D et al (2006). Multiple-turnover thio-ATP hydrolase and phospho-enzyme intermediate formation activities catalyzed by an RNA enzyme. Nucleic Acids Res. 34(11): 3201-3208. Assay: Phosphate in human phosphotyrosyl phosphatase activator.
          Saran, D. et al (2006). Multiple-turnover thio-ATP hydrolase and phospho-enzyme intermediate formation activities catalyzed by an RNA enzyme. Nucleic Acids Res. 34(11): 3201-3208. Assay: Phosphate in human RNA.
          Green, M.L. et al (2005). Ethylene glycol induces hyperoxaluria without metabolic acidosis in rats. Am J Physiol Renal Physiol 289: F536-F543. Assay: Phosphate in rat urine, serum.
          Guo W, et al (2005). Formation of 17-allylamino-demethoxygeldanamycin (17-AAG) hydroquinone by NAD(P)H:quinone oxidoreductase 1: role of 17-AAG hydroquinone in heat shock protein 90 inhibition. Cancer Res. 65(21):10006-15. Assay: Phosphate in human Hsp90.
          Kim HE,et al (2005).Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. PNAS 102(49):17545-50. Assay: Phosphate in human enzyme.

    Documents

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.