L-Arabinose/D-Galactose Assay Kit

L-Arabinose/D-Galactose Assay Kit

Catalog Number:
CMK1462168MEG
Mfr. No.:
K-ARGA
Price:
$502
  • Size:
    115 assays (manual)/1150 assays (microplate)/1150 assays (auto-analyser)
    Quantity:
    Add to Cart:
      • Overview
        • The L-Arabinose/D-Galactose test kit is a simple, reliable and accurate UV method for the measurement and analysis of L-arabinose and/or D-galactose in various materials including foods, feeds, beverages and plant products.

          Note for Content: The number of manual tests per kit can be doubled if all volumes are halved. This can be readily accommodated using the MegaQuantTM Wave Spectrophotometer (D-MQWAVE).

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Limit of Detection: 0.58mg/L (L-arabinose), 0.69mg/L (D-galactose)
          Storage
          Short term stability: 2-8°C
          Long term stability: See individual component labels
          Stability
          > 2 years under recommended storage conditions

          * For research use only.

      • Applications
        • Application Description
          Analysis of hydrolysates of oligo- and polysaccharides (e.g. arabinan, arabinoxylan, galactan, arabinogalactan), milk, dairy products, foods containing milk (e.g. dietetic foods, bakery products, baby food, chocolate, sweets and ice-cream), food additives (e.g. sweeteners), cosmetics, pharmaceuticals and other materials (e.g. biological cultures, samples, etc.).
      • Reference
        • 1.Measurement of available carbohydrates in cereal and cereal products, dairy products, vegetables, fruit and related food products and animal feeds: First Action 2020.07. McCleary, B. V. & McLoughlin, C. (2021). Journal of AOAC International, qsab019.
          2.Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase. McCleary, B. V., McKie, V. A., Draga, A., Rooney, E., Mangan, D. & Larkin, J. (2015). Carbohydrate Research, 407, 79-96.
          3.Chemical composition and bioactivity of oilseed cake extracts obtained by subcritical and modified subcritical water. Švarc-Gajić, J., Rodrigues, F., Moreira, M. M., Delerue-Matos, C., Morais, S., Dorosh, O., Silva, A. M., Bassani, A., Dzedik, V. & Spigno, G. (2022). Bioresources and Bioprocessing, 9(1), 1-14.
          4.High-pressure autohydrolysis process of wheat straw for cellulose recovery and subsequent use in PBAT composites preparation. Fiorentini, C., Bassani, A., Garrido, G. D., Merino, D., Perotto, G., Athanassiou, A., Prantie, J., Halonen, N. & Spigno, G. (2022). Biocatalysis and Agricultural Biotechnology, 39, 102282.
          5.Utilization of stalk waste separated during processing of sun-dried figs (Ficus carica) as a source of pectin: Extraction and determination of molecular and functional properties. Çavdaroğlu, E. & Yemenicioğlu, A. (2021). LWT, 154, 112624.
          6.Escherichia coli AraJ boosts utilization of arabinose in metabolically engineered cyanobacterium Synechocystis sp. PCC 6803. Ranade, S. & He, Q. (2021). AMB Express, 11(1), 1-14.
          7.The protective effect of Scenedesmus dimorphus polysaccharide as an antioxidant and antiaging agent on aging rat model induced by D-galactose. Armaini, A. & Imelda, I. (2021). Journal of Applied Pharmaceutical Science, 11(05), 054-063.
          8.Monosaccharide constituents of potato root exudate influence hatching of the white potato cyst nematode. Bell, C. A., Mobayed, W., Lilley, C. J. & Urwin, P. (2021). PhytoFrontiers, 1-26.
          9.A new, quick, and simple protocol to evaluate microalgae polysaccharide composition. Decamp, A., Michelo, O., Rabbat, C., Laroche, C., Grizeau, D., Pruvost, J. & Gonçalves, O. (2021). Marine Drugs, 19(2), 101.
          10.A novel glycosidase plate-based assay for the quantification of galactosylation and sialylation on human IgG. Rebello, O. D., Gardner, R. A., Urbanowicz, P. A., Bolam, D. N., Crouch, L. I., Falck, D. & Spencer, D. I. (2020). Glycoconjugate Journal, 37(6), 691-702.
          11.Structural analysis of β‐L‐arabinobiose‐binding protein in the metabolic pathway of hydroxyproline‐rich glycoproteins in Bifidobacterium longum. Miyake, M., Terada, T., Shimokawa, M., Sugimoto, N., Arakawa, T., Shimizu, K., Igarashi, K., Fujita, K. & Fushinobu, S. (2020). The FEBS Journal, 287(23), 5114-5129.
          12.Comparison of Japanese and Indian intestinal microbiota shows diet-dependent interaction between bacteria and fungi. Pareek, S., Kurakawa, T., Das, B., Motooka, D., Nakaya, S., Rongsen-Chandola, T. et al. (2019). NPJ Biofilms and Microbiomes, 5(1), 1-13.
          13.Cross-linking of diluted alkali-soluble pectin from apple (Malus domestica fruit) in different acid-base conditions. Gawkowska, D., Cieśla, J., Zdunek, A. & Cybulska, J. (2019). Food Hydrocolloids, 92, 285-292.
          14.Restriction-deficient mutants and marker-less genomic modification for metabolic engineering of the solvent producer Clostridium saccharobutylicum. Huang, C. N., Liebl, W. & Ehrenreich, A. (2018). Biotechnology for Biofuels, 11(1), 264.
          15.Mechanisms of utilisation of arabinoxylans by a porcine faecal inoculum: competition and co-operation. Feng, G., Flanagan, B. M., Mikkelsen, D., Williams, B. A., Yu, W., Gilbert, R. G. & Gidley, M. J. (2018). Scientific Reports, 8(1), 4546.

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.