Application Description
Spectrum: Chloramphenicol is effective against Gram-positive and Gram-negative bacteria, both aerobic and anaerobic bacteria. It is also effective against Mycoplasmas, Chlamydiae, and Rickettsiae.
Microbiology Applications: Chloramphenicol is commonly used in clinical in vitro microbiological antimicrobial susceptibility tests (panels, discs, and MIC strips) against Gram-positive and Gram-negative microbial isolates. Medical microbiologists use AST results to recommend antibiotic treatment options. Representative MIC values include: Neisseria meningitides 0.06 µg/mL - 8 µg/mL Streptococcus pneumoniae 0.25 µg/mL – 4 µg/mL Bacterial resistance to Chloramphenicol is enzymatic inactivation by acetylation via different types of chloramphenicol acetyltransferases (CATs), and this feature has been exploited for gene selection. Chloramphenicol is routinely used to select for transformed cells that express the Chloramphenicol resistance gene, cat.Media Supplement Chloramphenicol is used as a selective agent in: Dermasel Agar - Dermasel Selective Supplement. Selection of dermatophyte fungi from hair, nails, and skin scrapings. Chromogenic Candida Agar - Candida Selective Supplement
Plant Biology Applications: Chloramphenicol is gene selection agent for resistant plants containing the cat gene. Chimeric genes made up of the nopaline synthase promoter and bacterial coding sequences that specify resistance to Chloramphenicol were inserted into a Ti plasmid vector and used to transform tobacco protoplasts. The use of a non-oncogenic Ti plasmid was used and phenotypically normal fertile plants regenerated from the resistant calli, thus providing a natural environment for studying gene expression and development of plant cells (De Bloc et al, 1984).
Cancer Applications: Researchers at the University of Manchester, UK found a conserved phenotypic dependence on the biogenesis of mitochondria for the expansion of cancer stem cells. Since Chroramphenicol can inhibit mitochrondrial biogenesis, it was found to inhibit tumor-sphere formation in MCF7 cells. This approach is mutation-independent, and treats cancer like a single disease of ‘stemness’, independent of tumor type. This approach was successful in vitro with 12 different cancer cell lines, across 8 different tumor types (breast, DCIS, ovarian, prostate, lung, pancreatic, melanoma, and glioblastoma (brain) (Lamb et al, 2015).