Urea/Ammonia Assay Kit (Rapid)

Urea/Ammonia Assay Kit (Rapid)

Catalog Number:
CMK1462231MEG
Mfr. No.:
K-URAMR
Price:
$445
  • Size:
    100 assays (50 of each) per kit
    Quantity:
    Add to Cart:
      • Overview
        • The Urea/Ammonia (Rapid) test kit is suitable for the specific and rapid measurement and analysis of urea and ammonia in water, beverages, milk and food products.
          Note for Content: The number of manual tests per kit can be doubled if all volumes are halved. This can be readily accommodated using the MegaQuantTM Wave Spectrophotometer (D-MQWAVE).

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Limit of Detection: 0.13mg/L (urea), 0.07mg/L (ammonia)
          Storage
          Short term stability: 2-8°C
          Long term stability: See individual component labels
          Stability
          > 1 year under recommended storage conditions

          * For research use only.

      • Applications
        • Application Description
          Wine, grape juice, must, fruit juices, soft drinks, milk, cheese, meat, processed meat, bakery products, seafood, fertilizers, feed, pharmaceuticals, cosmetics, water (e.g. swimming-pool water), Kjeldahl analysis, paper (and cardboard) and other materials (e.g. biological cultures, samples, etc.).
      • Reference
        • 1.Megazyme “advanced” wine test kits general characteristics and validation. Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.
          2.Grape and wine analysis: Oenologists to exploit advanced test kits. Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.
          3.Experimental study and modelling of a packed bed bioreactor for urea removal in wines. Mazzù, R., Tavilli, E. & Fidaleo, M. (2023). Food and Bioproducts Processing, 140, 230-241.
          4.Scheffersomyces stipitis ability to valorize different residual biomasses for vitamin B9 production. Mastella, L., Senatore, V., Beltrani, T. & Branduardi, P. (2022). Microbial Biotechnology.
          5.Streamlining of a synthetic co‐culture towards an individually controllable one‐pot process for polyhydroxyalkanoate production from light and CO2. Kratzl, F., Kremling, A. & Pflüger‐Grau, K. Engineering in Life Sciences, (2022), In Press.
          6.Performance evaluation of an enzymatic spectrophotometric method for milk urea nitrogen. Portnoy, M., Coon, C. & Barbano, D. M. (2021). Journal of Dairy Science.
          7.Evaluation of Dietary Administration of Chestnut and Quebracho Tannins on Growth, Serum Metabolites and Fecal Parameters of Weaned Piglets. Caprarulo, V., Hejna, M., Giromini, C., Liu, Y., Dell’Anno, M., Sotira, S., Reggi, S., Sgoifo-Rossi, C. A., Callegari, M. L. & Rossi, L. (2020). Animals, 10(11), 1945.
          8.Flow-based method for the determination of biomarkers urea and ammoniacal nitrogen in saliva. Thepchuay, Y., Costa, C. F., Mesquita, R. B., Sampaio-Maia, B., Nacapricha, D. & Rangel, A. O. (2020). Bioanalysis, 12(7), 455-465.
          9.Differential cytokine and metabolite production by cervicovaginal epithelial cells infected with Lactobacillus crispatus and Ureaplasma urealyticum. Cavanagh, M., Amabebe, E. & Anumba, D. O. (2020). Anaerobe, 62, 102101.
          10.Enhancing biomass and lipid productions of microalgae in palm oil mill effluent using carbon and nutrient supplementation. Cheah, W. Y., Show, P. L., Juan, J. C., Chang, J. S. & Ling, T. C. (2018). Energy Conversion and Management, 164, 188-197.
          11.Urea and lipid extraction treatment effects on δ15N and δ13C values in pelagic sharks. Li, Y., Zhang, Y., Hussey, N. E. & Dai, X. (2016). Rapid Communications in Mass Spectrometry, 30(1), 1-8.
          12.Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Slininger, P. J., Dien, B. S., Kurtzman, C. P., Moser, B. R., Bakota, E. L., Thompson, S. R., O'Bryan, P. J., Cotta, M. A., Balan, V., Jin, M., Sousa, L. D. C. & Dale, B. E. & Sousa, L. D. C. (2016). Biotechnology and Bioengineering, 113(8), 1676-1690.
          13.Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae. Milne, N., Luttik, M. A. H., Rojas, H. C., Wahl, A., Van Maris, A. J. A., Pronk, J. T. & Daran, J. M. (2015). Metabolic Engineering, 30, 130-140.
          14.Assessing heterogeneity of the composition of mare's milk in Flanders. Naert, L., Vande Vyvere, B., Verhoeven, G., Duchateau, L., De Smet, S. & Coopman, F. (2013). Vlaams Diergeneeskundig Tijdschrift, 82(1), 23-30.
          15.Comparative study of colorectal health related compounds in different types of bread: Analysis of bread samples pre and post digestion in a batch fermentation model of the human intestine. Hiller, B., Schlörmann, W., Glei, M. & Lindhauer, M. G. (2011). Food Chemistry, 125(4), 1202-1212.

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.