L-Arginine/Urea/Ammonia Assay Kit

L-Arginine/Urea/Ammonia Assay Kit

Catalog Number:
CMK1462226MEG
Mfr. No.:
K-LARGE
Price:
$413
  • Size:
    50 Assays per kit
    Quantity:
    Add to Cart:
      • Overview
        • The L-Arginine/Urea/Ammonia test kit is specific and a rapid measurement and analysis of L-arginine, urea and ammonia in grape juice/must and wine.
          Note for Content: The number of manual tests per kit can be doubled if all volumes are halved. This can be readily accommodated using the MegaQuantTM Wave Spectrophotometer (D-MQWAVE).

          Please contact us at for specific academic pricing.

      • Properties
        • Details
          Limit of Detection: 0.07mg/L (ammonia), 0.13mg/L (urea), 0.37mg/L (L-arginine)
          Storage
          Short term stability: 2-8°C
          Long term stability: See individual component labels
          Stability
          > 1 year under recommended storage conditions

          * For research use only.

      • Applications
        • Application Description
          Grape juice, wine must, wine and other materials (e.g. biological cultures, samples, etc.).
      • Reference
        • 1.Megazyme “advanced” wine test kits general characteristics and validation. Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.
          2.Grape and wine analysis: Oenologists to exploit advanced test kits. Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.
          3.Exploring the influence of grape tissues on the concentration of wine volatile compounds. Blackford, C. L., Trengove, R. D. & Boss, P. K. (2021). Australian Journal of Grape and Wine Research, In Press.
          4.Arginase activity characterization during alcoholic fermentation by sequential inoculation with non-Saccharomyces and Saccharomyces Yeast. Benucci, I. & Esti, M. (2021). Food and Bioprocess Technology, 1-8.
          5.Aroma and Sensory Profiles of Sauvignon Blanc Wines from Commercially Produced Free Run and Pressed Juices. Parish-Virtue, K., Herbst-Johnstone, M., Bouda, F., Fedrizzi, B., Deed, R. C. & Kilmartin, P. A. (2021). Beverages, 7(2), 29.
          6.Nanocurcumin and arginine entrapped injectable chitosan hydrogel for restoration of hypoxia induced endothelial dysfunction. Mohandas, A. & Rangasamy, J. (2020). International Journal of Biological Macromolecules, 166, 471-482.
          7.Functional Applications of Polyarginine-Hyaluronic Acid-Based Electrostatic Complexes. Kale, N. R., Dutta, D., Carstens, W., Mallik, S. & Quadir, M. (2020). Bioelectricity, 2(2), 158-166.
          8.The impact of postharvest ultra-violet light irradiation on the thiol content of Sauvignon blanc grapes. Parish-Virtue, K., Herbst-Johnstone, M., Bouda, F. & Fedrizzi, B. (2019). Food Chemistry, 271, 747-752.
          9.Volatile profiles and chromatic characteristics of red wines produced with Starmerella bacillaris and Saccharomyces cerevisiae. Englezos, V., Rantsiou, K., Cravero, F., Torchio, F., Giacosa, S., Ortiz-Julien, A., Gerbi, V., Rolle, L. & Cocolin, L. (2018). Food Research International, 109, 298-309.
          10.Kinetic characterization of arginase from Saccharomyces cerevisiae during alcoholic fermentation at different temperatures. Benucci, I., Fiorelli, V., Lombardelli, C., Liburdi, K. & Esti, M. (2017). LWT-Food Science and Technology, 82, 268-273.
          11.Viable and culturable populations of Saccharomyces cerevisiae, Hanseniaspora uvarum and Starmerella bacillaris (synonym Candida zemplinina) during Barbera must fermentation. Wang, C., Esteve-Zarzoso, B., Cocolin, L., Mas, A. & Rantsiou, K. (2015). Food Research International, 78, 195-200.
          12.In vitro removal of ochratoxin A by two strains of Saccharomyces cerevisiae and their performances under fermentative and stressing conditions. Petruzzi, L., Bevilacqua, A., Baiano, A., Beneduce, L., Corbo, M. R. & Sinigaglia, M. (2014). Journal of Applied Microbiology, 116(1), 60-70.
          13.Sauvignon blanc metabolomics: grape juice metabolites affecting the development of varietal thiols and other aroma compounds in wines. Pinu, F. R., Edwards, P. J. B., Jouanneau, S., Kilmartin, P. A., Gardner, R. C. & Villas-Boas, S. G. (2014). Metabolomics, 10(4), 556-573.
          14.Grape contribution to wine aroma: production of hexyl acetate, octyl acetate, and benzyl acetate during yeast fermentation is dependent upon precursors in the must. Dennis, E. G., Keyzers, R. A., Kalua, C. M., Maffei, S. M., Nicholson, E. L. & Boss, P. K. (2012). Journal of Agricultural and Food Chemistry, 60(10), 2638-2646.
          15.Genome-wide fitness profiles reveal a requirement for autophagy during yeast fermentation. Piggott, N., Cook, M. A., Tyers, M. & Measday, V. (2011). G3: Genes, Genomes, Genetics, 1(5), 353-367.

    Note: If you don't receive our verification email, do the following:

  • Copyright © Amerigo Scientific. All rights reserved.